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The classification of rules may be one of the most fundamental targets in the study of cellular automata. In
this paper, we propose a method for achieving such a classification, in which a new quiescent string dominance
parameterF, which is orthogonal tol, is introduced. ForN-neighbor andK-state cellular automata, in the
region 1/K,l,1−1/K, the maximumF corresponds to the class III rules, and its minimum, to the class II
or class I rules. Therefore, transition of the pattern class takes place between them without fail. By usingl and
F, the phase diagram of cellular automata is determined in thesl ,Fd plane for five-neighbor and four-state
cellular automata. The phase diagram indicates that along theF axis, class III rules are distributed in a largeF
region, while class I and class II rules are, in a smallF region, and class IV rules are found in the overlapping
region of class II and III rules. These distributions are almost independent ofl. Along the l axis, all four
pattern classes are found in the region 0.25,l,0.75, and no correlation between pattern class andl param-
eter is observed.
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I. INTRODUCTION

Cellular automata(CA) are the mathematical models for
complex systems. They consist of a lattice of sites, each of
which takes a finite set of possible values(0 to K−1). The
value of the site is called its state and it evolves synchro-
nously in discrete timet according to a set of mappings
which are defined by theN neighborhoods of the site around
it. We denote such cellular automata as CAsN,Kd.

The states are represented assst , id, wherei is a position
on the lattice. The time evolution ofsst , id is given by

sst + 1,id = TFsSt,i −
N − 1

2
D,sSt,i −

N − 3

2
D,...,sst,id,...,

3sSt,i −
N − 3

2
D,sSt,i +

N − 1

2
DG . s1d

The set of mappings

Tsm,n,...,k,...,r,sd = h,sm,n,etc . = 0,...,K − 1d s2d

will be called the rule which consists ofKN entries. A set of
statessst , id at the samet is called a configuration, and a time
sequence of the configuration forms a pattern.

It is well known that various patterns can be generated
according to the chosen rules. Wolfram[1] classified these
patterns into four rough categories: class I(homogeneous
states), class II (simple separated periodic structures), class
III (chaos aperiodic patterns), and class IV(edge of chaos;
complex patterns of localized structure). The class IV pat-
terns have been the most interesting target of studies of CA,
because they provide us with examples of self-organization
in a simple system, and it is argued that the possibility of
computation is realized by the complexity at the edge of
chaos[2,3].

Much more detailed studies of the patterns are carried out
for elementary CA[CA(3,2)], in which patterns are studied
by, computational mechanics[4], basin of attractor[5], etc.
In this case however, the total number of independent rules is
small enough(88) [6] that investigations of all of them have
already been carried out, and their classification using some
sets of parameters has also been studied[5–7].

Furthermore, for two-state CA, the symmetry of the inter-
change of states “0” and “1” seems to make the classifica-
tions of CA more delicate than those of CA withKù3. Dif-
ferent results for ther=1/2 task in CA (7,2) have been
obtained by Packard[8], and Mitchell, Crutchfield and
Hraber[9]. Therefore, in order to elucidate general properties
of the CA, it may be worth studying CA withKù3.

However, if we proceed to the studies of general
CAsN,Kd, the number of rules grows superexponentially

KKN
; therefore, except for a few CAsN,Kd with small com-

binations ofN andK, it is impossible to study all rules even
within the lifetime of the universe. Therefore in order to
classify these CAsN,Kd rules, some other methods are nec-
essary.

Studies in this direction have been started by Langton. He
chose state “0” for quiescent states, and introduced thel
parameter as[3,10]

l =
Nh

KN , s3d

whereNh is the number of mappings in whichh in Eq. (2) is
not equal to 0. In other words,l is the probability that the
mappings do not select the quiescent state in the next time
step. Langton claimed that asl increases, the pattern class
changes from class I to class II and then to class III, and that
class IV behavior is observed between class II and class III
pattern classes[3,10,11].

The l parameter is thought to represent the average be-
havior of the CA rule space, but it ultimately does not suffi-
ciently classify the quantitative behavior of CA. It is well*Electronic address: sakai@e.yamagata-u.ac.jp
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known that different pattern classes coexist at the samel.
Which of these pattern classes is chosen depends on the ran-
dom numbers used in generating the rules. The reason or
mechanism for this is not yet known; we have no way of
controlling pattern classes at fixedl. In Ref. [11], a sche-
matic phase diagram was presented, however, a vertical axis
was not specified. Therefore, it is indispensable to find a new
parameter that will lead to a more quantitative understanding
of the rule space of CA[12].

The purposes of this study are to find a new parameterF,
which fixes the vertical axis of the phase diagram, and to
obtain a phase diagram of CA in thesl ,Fd plane. In this
paper, we mainly focus on CA(5,4), because this is a model
for which Langton has discussed the relationship between
the l parameter and pattern classes[3].

The outline of the paper is as follows. In Sec. II, we start
by elucidating why different pattern classes are generated at
the samel. It is found that pattern classes have a strong
correlation with the mappings that break strings of quiescent
states. Then mappings are grouped into four types, according
to the destruction and construction of strings of quiescent
states. By introducing a method of changing the numbers of
quiescent-string-breaking mappings, we can change pattern
classes at will while keepingl or Nh fixed. We also derive a
theoretical explanation for why this change of pattern classes
takes place without fail in the region 1/Kølø1−1/K.

In Sec. III, the method of changing the pattern classes is
studied quantitatively by introducing a new parameter,F,
which we call the quiescent string dominance parameter. The
maximumF corresponds to the class III pattern, and its mini-
mum, to the class II or class I pattern. Therefore the transi-
tion of pattern classes is observed without fail somewhere
between these maximum and minimum values.

The distribution of the rules in thesl ,Fd plane is studied
in Sec. IV. We generate about 14 000 rules randomly(details
of the method are explained in a later section), and plot each
of them on thesl ,Fd plane. The distribution of the rules
shows that throughout the range 1/4ølø1−1/4, all four
pattern classes coexist. Class III rules are located in a largeF
region, while class II and I rules are, in a smallF region, and
class IV rules are found in their overlapping region. The
correlation between thel parameter and the pattern classes
claimed by Langton[3] is not observed. We find that his
result is dependent on the method of generating rules using
probability l.

In Sec. V, we determine the phase diagram(classification
diagram of rule) of CA from the distributions of the class II
and class III rules. It may be the first semiquantitative phase
diagram which Langton sketched without fixing the vertical
axis.

Section VI is devoted to discussions and conclusions. The
transmission of initial-state informat ion, and other possible
methods of determining theF parameter will be discussed.

II. STRUCTURE OF RULE AND PATTERN CLASSES

A. Correlation between pattern classes and quiescent-string-
breaking mappings

In this paper, we fix the size of the lattice to be 150 and
set a periodic boundary condition. A pattern is considered to

fall into class IV when its transient length[3] is longer than
3000 time steps. The pattern class is discriminated by ob-
serving the pattern, the time sequence of spatial entropy
fHstdg and the spatial probabilities of the statesfristd , i
=0,1,2,3g. For a class II pattern,Hstd andristd converge to
some fixed values or periodically repeat some fixed values,
while for class III patterns, they fluctuate randomly. Typical
pattern classes are shown in Figs. 1 and 2[13].

First, we study whether or not the pattern classes are sen-
sitive to initial configurations. We fix the rule and change
initial configurations randomly. For most rules, details of the
patterns depend on initial configuration, but the pattern
classes are unchanged[1]. Thus differences in pattern classes
are mostly due to those of rules, and the target of our inquiry
concerns these differences between them.

For most rules, pattern class is determined by a randomly
selected initial condition. However there are rules which
generate different pattern classes depending on the initial
configuration. These initial configuration dependences are
observed for rules with long transient length. For these rules,
about ten patterns are generated under random initial con-
figurations and pattern classes are determined statistically.
They will be further discussed in Sec. VI A, in connection
with the transmission of initial-state information.

Up to Sec. III, we generate rules using onlyNh, as fol-
lows. We start by choosing 1024−Nh mappings randomly
and seth=0 on the right-hand side of Eq.(2). For the rest of
the Nh mappings,h takes the value 1, 2, or 3 randomly.

For a short while, we do not impose the quiescent condi-
tion (QC), Ts0,0,0,0,0d=0, because without this condition,
the structure of the rule becomes more transparent. This
point will be further discussed in Sec. III.

In order to elucidate why the different pattern classes are
generated at the samel, we collect rules of different pattern
classes at the samel, and look for differences between them.
We setNh=450 sl=0.44d, because we empirically find that
around thisNh point, class III, class II, and class IV patterns
are generated in similar ratios. After some trial and error, we
find a strong correlation between pattern classes and QC. We
generate 20 rules for each of the class II, class III, and class
IV patterns. Among them, the numbers of rules that satisfy
QC are 20, 0, and 2 for class II, class III, and class IV
patterns, respectively. This correlation suggests that the map-
ping Ts0,0,0,0,0d=h,hÞ0, which breaks a string of five
quiescent states, pushes the pattern toward class III. We an-
ticipate that a similar situation will hold for string of four
quiescent states.

We return to the usual definitions of CA. In the following,
we discuss CA under the QC,Ts0,0,0,0,0d=0. The map-
pings which break the strings of four quiescent states are
given by

Ts0,0,0,0,id = h,

Tsi,0,0,0,0d = h,si,h = 1,2,3d. s4d

We study the correlation between the number of these map-
pings and pattern classes.
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We denote the total number of mappings expressed by Eq.
(4) in a rule asN4. In order to study the correlation between
the pattern class and numberN4, we generate 30 rules and
grouped them according to the numberN4. We have 4 rules
with N4ù4, 13 rules withN4=3, 9 rules withN4=2, and 4
rules with N4ø1. WhenN4ù4, all rules generate class III
patterns, whereas whenN4ø1, only class II patterns are gen-
erated. AtN4=3 andN4=2, class III, class II, and class IV
patterns coexist. Examples are shown in Fig. 1. The coexist-
ence of three pattern classes atN4=3 is seen in Figs.
1(b)–1(d) and that ofN4=2 is exhibited in Figs. 1(e)–1(g).

As anticipated, strong correlation betweenN4 and pattern
class is also observed in this case. These discoveries have
provided us with a key hint that leads us to the hypothesis
that the mapping, which breaks strings of quiescent states,
will play a major role in determining the pattern classes.

B. Structure of rule and replacement experiment

In order to test the hypothesis given in the preceding sec-
tion, we classify the mappings into four groups according to
their operation on strings of quiescent states. In the follow-
ing, Greek characters in the mappings represent groups
0,1,2,3while Roman ones represent groups1,2,3.

Group 1:Tsm ,n ,0 ,r ,sd=h.
The mappings in this group break strings of quiescent states.

Group 2:Tsm ,n ,0 ,r ,sd=0.
The mappings in this group conserve strings.

Group 3:Tsm ,n , i ,r ,sd=0.
The mappings in this group will develop strings of quiescent
states.

Group 4:Tsm ,n , i ,r ,sd= l.
The mappings in this group do not affect the string of quies-
cent states in the next time step.

Let us denote the number of group 1 mappings in a rule as
Nsg1d. The number of other groups is denoted similarly.
These numbersNsgid , si =1,2,3,4d satisfy the following
sum rules, whenNh is fixed:

Nsg1d + Nsg2d = 256,

Nsg3d + Nsg4d = 768,

Nsg2d + Nsg3d = 1024 −Nh,

Nsg1d + Nsg4d = Nh. s5d

In the methods of generating rules randomly usingNh or l,
these numbers are determined mainly by the probabilityl;
namely, Nsg1d.256l, Nsg2d.256s1−ld, Nsg3d.768s1
−ld, andNsg4d.768l. Therefore they suffer from fluctua-
tion due to randomness.

FIG. 1. Pattern classes atNh=450. The quiescent state is shown by the white dot, while other states are indicated by black point:(a)
N4=4; (b), (c), (d) N4=3; (e), (f ), (g) N4=2; (h) N4=1.
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The group 1 mappings are further classified into five types
according to the length of the string of quiescent states that
they break. These are shown in Table I. Mapping D5 is al-
ways excluded from the rules by the QC. Our hypothesis
presented at the end of Sec. II A is expressed more quantita-
tively as follows: the numbers of D4, D3, D2, and D1 map-
pings shown in Table I will mainly determine the pattern
classes. In order to test this hypothesis, we artificially change
the numbers of mappings in Table I while keepingNh fixed.
For D4 mappings, we carry out the replacements defined by

Ts0,0,0,0,id = h → Ts0,0,0,0,id = 0,

or Tsi,0,0,0,0d = h → Tsi,0,0,0,0d = 0,

Tsm,n, j ,r,sd = 0→ Tsm,n, j ,r,sd = l , s6d

where, except forh, the groupsm, n, r, s, j , and l are
selected randomly. Similarly, the replacements are general-
ized for D3, D2, and D1 mappings, and are denoted as RP4
to RP1 in Table I.

The reverse replacements for D4 are

Ts0,0,0,0,id = 0→ Ts0,0,0,0,id = h,

or Tsi,0,0,0,0d = 0→ Tsi,0,0,0,0d = h,

Tsm,n, j ,r,sd = l → Tsm,n, j ,r,sd = 0. s7d

In this case, the grouph, m, n, j , r, and s are selected
randomly. The replacements for D3, D2, and D1 are simi-
larly defined, and are called RC4 to RC1.

With these replacements of RP4 to RP1 or RC4 to RC1,
the numbers of mappings in Table I are changed, whileNh
remains the same. We denote the numbers of D4, D3, D2,
and D1 mappings asN4, N3, N2, and N1, respectively. We
study whether or not these replacements change pattern
classes. In these replacements, the RP4s are always carried
out first, followed by RP3s. Examples are shown in Fig. 2.

TABLE I. Classification of the mappings in group 1 into five
types, wherehÞ0.

Type Total number Name Replacement

Ts0,0,0,0,0d=h 1 D5 RP5,RC5

Ts0,0,0,0,id=h 3 D4 RP4,RC4

Tsi ,0 ,0 ,0,0d=h 3

Ts0,0,0,i ,sd=h 12

Tsi ,0 ,0 ,0,md=h 9 D3 RP3,RC3

Tsm , j ,0 ,0 ,0d=h 12

Tsm , j ,0 ,0 ,md=h 36 D2 RP2,RC2

Tsi ,0 ,0 ,l ,sd=h 36

Tsm , j ,0 ,l ,sd=h 144 D1 RP1,RC1

FIG. 2. Examples of the replacement experiments atNh=615.(a) Obtained randomly withNh=615, by the method explained in Sec. II A.
(b) to (h) Obtained by the replacements of the rule of(a), which are summarized in Table II.
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The rule of Fig. 2(a) is obtained randomly withNh=615.
At Nh=615, most of randomly obtained rules generate class
III patterns. We first apply replacements RP4 three times,
thenN4 becomes 0. At this stage, the rule still generates class
III patterns. Then we proceed to carry out replacement RP3.
The class III patterns continue fromN3=22 to N3=15, and
when N3 becomes 14, the pattern changes to the class IV
behavior, which is shown in Fig. 2(b). Figure 2(c) is obtained
with one more RP3 replacement for the Fig. 2(b) rule. Figure
2(c) shows a class II behavior with a rather long transient
length. The pattern with one more replacement of RP3 for
Fig. 2(c) is shown in Fig. 2(d), where the transient length
becomes shorter. In Table II, we have summarizedN4 and
N3, and the numbers of replacements RP4 and RP3 needed to
obtain each rule in Fig. 2.

Similarly, experiments in which replacements RP4 are
stopped atN4=1 andN4=2 are shown in Figs. 2(e)-2(f) and
2(g)-2(h), respectively. We note that the pattern changes
from class III to class IV take place at(N4=0, N3=13), (N4
=1,N3=6), and (N4=2,N3=0). Therefore the effect that
pushes a rule toward class III is stronger for D4 than for D3.
This point will be discussed more quantitatively in the fol-
lowing section.

At Nh=819, 768, 717, 615, 512, 410, 307, and 205, we
carried out similar replacement experiments for 119, 90, 90,
117, 107, 92, 103, and 89 rules, respectively. At allNh points,
we succeeded in changing the pattern classes from class III
to class II or class I, or vice versa, by these replacements. In
many cases, class IV patterns were observed between them.

C. Chaotic and periodic limit of general CA„N ,K…

Let us study the effects of the replacements theoretically
in general CAsN,Kd. In the general case, rules are also clas-
sified into four groups, as shown in Sec. II B. We have de-
noted their numbers asNsg1d, Nsg2d, Nsg3d, and Nsg4d.
When Nh is fixed, these numbers satisfy the following sum
rules, which are generalizations of Eq.(5).

Nsg1d + Nsg2d = KN−1,

Nsg3d + Nsg4d = KN−1sK − 1d,

Nsg2d + Nsg3d = KN − Nh,

Nsg1d + Nsg4d = Nh. s8d

However, the individual numberNsgid (i =1,2,3,4), suffers
from fluctuations due to random number. The replacements
needed to decrease the number of group 1 mappings while
keepingNh fixed are given by

Nsg1d → Nsg1d − 1, Nsg2d → Nsg2d + 1,

Nsg3d → Nsg3d − 1, Nsg4d → Nsg4d + 1. s9d

These replacements stop either whenNsg1d=0 or Nsg3d
=0 is reached(Table III). Therefore whenNsg1døNsg3d,
which corresponds tolø s1−1/Kd in l, all group 1 map-
pings are replaced by group 2 mappings. In this limit, quies-
cent states at timet will never be changed, because there is
no mapping which converts them to other states, while group
3 mappings have chances to create new quiescent states in
the next time step. Therefore, the number of quiescent states
in a configuration is a nondecreasing function of timet.
Then, the pattern class should be class I or class II, which we
call the periodic limit.

Let us discuss reverse replacements of Eq.(9). In these
replacements, ifNsg2døNsg4d, which corresponds to 1/K
øl, all group 2 mappings, except for the QC, are replaced
by group 1 mappings. In this extreme reverse case, almost all
quiescent states at timet are converted to other states in the
next time step, while group 3 mappings create them at dif-
ferent places. Then the patterns will most probably develop
into class III. This limit will be called the chaotic limit. We
note that there is a possibility that atypical rules and initial
conditions might generate periodic patterns even in this limit.
However in this paper, these atypical cases are not discussed.

Therefore in the region 1/Kølø1−1/K, all rules are
located somewhere between these two limits, and by succes-
sive replacements of Eq.(9) and their reverse replacements,
change of the pattern classes takes place without fail. This is
the theoretical foundation for the replacement experiments
described in the preceding section and also explains why
four pattern classes coexist in this region.

The replacements defined by Eq.(9) and their reverse
replacements, provide us with a method of controlling the
pattern classes at the sameNh. The details of the replace-
ments of Eq.(9) depend on the individual models. In the
CA (5,4) case, these replacements were RP4 to RP1 and RC4
to RC1. By applying these replacements, we could study the
rules, which are difficult to obtain using onlyNh (or l), and
gain deeper understanding of the structure of CA rules space.

TABLE II. The number of group 1 mappings and the number of
replacements needed to obtain the pattern classes shown in Fig. 2

Figure N4 N3 N2 N1 RP4 RP3 RP2 RP1

2(a) 3 22 53 96 0 0 0 0

2(b) 0 14 53 96 3 8 0 0

2(c) 0 13 53 96 3 9 0 0

2(d) 0 12 53 96 3 10 0 0

2(e) 1 7 53 96 2 15 0 0

2(f) 1 6 53 96 2 16 0 0

2(g) 2 1 53 96 1 21 0 0

2(h) 2 0 53 96 1 22 0 0

TABLE III. Classification of CAsN,Kd mappings into 4 groups.
mi represents 0 toK-1 while h, i, and l represent 1 toK-1.

Mapping type Average number

Group 1 Tsm1,m2, ... ,0 , ... ,mNd=h KN−1l

Group 2 Tsm1,m2, ... ,0 , ... ,mNd=0 KN−1s1−ld
Group 3 Tsm1,m2, ... ,i , ... ,mNd=0 KN−1sK−1ds1−ld
Group 4 Tsm1,m2, ... ,i , ... ,mNd= l KN−1sK−1dl
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III. QUIESCENT STRING DOMINANCE PARAMETER F
IN CA(5,4)

In the preceding section, we found that, in the region
1/Kølø1−1/K, each rule is located somewhere between
the chaotic limit and the periodic limit. In order to express
the position of the rule quantitatively, we introduce a new
parameterF which we call the quiescent string dominance
parameter. It provides us with a newF axis orthogonal tol.
The minimumF is the periodic limit, while its maximum
corresponds to the chaotic limit. In this section, we will de-
termine the parameterF for CA(5,4).

As a first approximation, the parameterF is taken to be a
function of the numbers of mappings D4, D3, D2, and D1,
which have been denoted asN4, N3, N2, andN1, respectively.
We proceed to determineFsN4,N3,N2,N1d by applying sim-
plest approximations and assumptions. We apply Maclaurin
series expansion forF, and approximate it by the linear terms
in N4, N3, N2, andN1.

FsN4,N3,N2d . c4N4 + c3N3 + c2N2 + c1N1. s10d

Here,c4=]F /]N4, and similarly forc3, c2, andc1. They rep-
resent the strength of the effects of mappings D4, D3, D2,
and D1 that push the rule towards the chaotic limit. These
definitions are symbolic, because numbersNi are discrete.
The measure in parameterF is still arbitrary. We set its unit
such that an increase in one unit ofN4, results in a change of
F by one unit. This corresponds to dividingF in Eq. (10) by
c4, and expressing it by ratiosc3/c4 sr3d, c2/c4 sr2d, and
c1/c4sr1d.

Before we proceed to determiner3, r2, and r1, let us in-
terpret the parameterF geometrically. Most generally, the
rules are classified in 1024-dimensional space, in case of
CA (5,4). The location of the rule of each pattern class forms
a hyperdomain in this space. We map these hyperdomains
into those of four-dimensionalsN4,N3,N2,N1d space. We in-
troduce a hypersurfaceSsN4,N3,N2,N1d=F in order to align
the points of class IV rules. In Eq.(10), we approximate it by
a hyperplane. TheF axis is the normal line to this plane.

Our strategy for determiningr3, r2 and r1 is to find the
regression hyperplane of class IV rules on four-dimensional
space(N4,N3,N2,N1). It is equivalent to fixing theF axis in
such a way that the projection of the distribution of class IV
rules on theF axis appears as narrow as possible. The quality
of our approximations and assumptions reflects the width of
the distribution of class IV rules. Using least squares, our
problem is formulated to findr3, r2, andr1 which minimize

ssr3,r2,r2d =
1

c4
2o

i,j
fFclassIV

i sN4
i ,N3

i ,N2
i ,N1

i d

− FclassIV
j sN4

j ,N3
j ,N2

j ,N1
j dg2, s11d

wherei and j indicate the class IV rules. We solve equations,
]S/]r3=0, ]S/]r2=0 and]S/]r1=0, which are

r3o
i,j

sdN3
i,jd2 + r2o

i,j
dN2

i,jdN3
i,j + r1o

i,j
dN1

i,jdN3
i,j

= − o
i,j

dN4
i,jdN3

i,j ,

r3o
i,j

dN3
i,jdN2

i,j + r2o
i,j

sdN2
i,jd2 + r1o

i,j
dN1

i,jdN2
i,j

= − o
i,j

dN4
i,jdN2

i,j ,

r3o
i,j

dN3
i,jdN1

i,j + r2o
i,j

dN2
i,jdN1

i,j + r1o
i,j

sdN1
i,jd2

= − o
i,j

dN4
i,jdN1

i,j , s12d

wheredN4
i,j =N4

i −N4
j , and similarly fordN3

i,j anddN2
i,j.

In order to collect class IV rules, we have generated rules
randomly both forNh in the region 205øNhø819 s0.2øl
ø0.8d, and for numbers of group 1 mappings in the ranges
0øN4ø6, 0øN3ø33, 0øN2ø72, and 0øN1ø144.

This is realized by a two-step method. In the first step, we
generate rules randomly according to the numberNh, as ex-
plained in Sec. II A. We note that at this step, the numbers of
group 1 mappings,N4, N3, N2, andN1, are distributed around
6l, 33l, 72l, and 144l, respectively. They are denoted as
Ni

l. Then in the second step, eachNi is determined randomly
between zero and its maximum. EachNi

l obtained in the first
step is changed to the random valueNi by the replacements
of RC4 to RC1 or RP4 to RP1.

We have generated about 14 000 rules, and classify them
into four pattern classes. There are 483 class I, 3169 class II,
10248 class III, and 329 class IV rules, respectively. From
the 329 class IV rules, the coefficientsr i are determined by
solving Eq.(12). We call them optimal coefficients. The re-
sults are summarized in the column “optimal” of Table IV,
where the statistical errors are estimated by the jackknife
method. The result shows that coefficients are positive, and
satisfy the order

c4 . c3 . c2 . c1. s13d

This means that the effects that push rules toward the chaotic
limit on the F axis are stronger for mappings which break
longer strings of quiescent states.

If the quiescent condition is not imposed, Eq.(13) will
becomec5.c4.c3.c2.c1. The correlation between pat-
tern classes and D5 mapping will be stronger than that be-
tween D4 mappings. If we start our study under the QC, we

TABLE IV. Optimal and intuitive coefficientsr i.

Optimal Error Intuitive

r3 0.1563 0.0013 0.18182

r2 0.0506 0.0007 0.08333

r1 0.0195 0.0002 0.04167
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may make a longer detour to find the hypothesis and arrive at
the qualitative conclusion presented in Sec. II.

The order in Eq.(13) is understood in terms of the fol-
lowing intuitive arguments. If six D4 mappings are included
in the rule, the string of five quiescent states will not de-
velop. Similarly, if 33 D3 mappings are present in the rule,
there is no chance that strings of four quiescent states are
made. These two situations are roughly similar for the for-
mation of pattern classes. Thus the strength of the D3 map-
pings r3 will be roughly equal to 6/33 of that of D4 map-
pings; similar arguments apply for the strengths of the D2
and D1 mappings. We call theser i intuitive coefficients, and
they are also shown in the column “intuitive” of Table IV. It
is found that differences between optimal and intuitive coef-
ficients are not large. The classification of the rules with an
intuitive F parameter will be discussed in Sec. VI B.

IV. DISTRIBUTION OF RULES IN „l ,F… PLANE

Using the optimalF parameter, we plot the position of
each rule in thesl ,Fd plane, as shown in Fig. 3. The class III
rules are shown to be located in a largeF region of about
Fù4, while class I and class II rules are in a smallF region
of aboutFø9, and class IV rules are found in the overlap-
ping region of class II and class III rules of about 4øFø9.

Figure 3 also reveals that at least in the 0.2ølø0.75
range, all four pattern classes coexist and that the classifica-
tion of the CA pattern classes on the basis of thel parameter
is not confirmed, contrary to the results in Ref.[3]. Let us
discuss the reason why Langton obtained his results. If rules

are generated only by the probabilityl using the “random-
table method” or the “random-walk-through method”[3],
numbers of group 1 rulesN4, N3, N2, andN1 are also con-
trolled by the probabilityl. They are distributed around the
Ni

l as described in Sec. III. ThenF parameters are also dis-
tributed around

Fl = s6 + 33r3 + 72r2 + 144r1dl. s14d

Therefore, in these methods,l andF are strongly correlated.
When l is small, rules with smallF are mainly generated,
which are class I and class II CA. On the other hand, in the
large l region, rules with largeF are predominantly gener-
ated, which are class III CA. The lineFl of Eq. (14) crosses
the location of class IV patterns at around 0.4ølø0.55. The
probability of obtaining the rules that are far from the line
given by Eq.(14) is very small. This might be the reason
why Langton obtained his results.

The distribution of rules throughout thesl ,Fd plane
shows the global structure of the CA rule space, as in Fig. 3
and lead to a deeper understanding of CA.

V. CLASSIFICATION OF RULES IN „l ,F… PLANE

In Fig. 3, it is found that rules are not separated by sharp
boundaries, but they have some probability distributions. We
denote the probability densities of class I, class II, class III,
and class IV rules asPI, PII , PIII , andPIV, respectively and
proceed to determine a phase diagram by using them.

The equilibrium pointsFE
II -III sld of class II and class III

rules are defined by the point where the relationPIIsFd

FIG. 3. Distribution of rules insl ,Fd plane.(a) Distribution of 483 class I rules.(b) Distribution of 3169 class II rules.(c) Distribution
of 10248 class III rules.(d) Distribution of 329 class IV rules.
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=PIII sFd is satisfied. The region wherePII andPIII coexist in
a similar ratio defines the transition region. The upper points
of the transition regionFU

II -III are the pointsPII =PIII /e, and
similarly for lower pointsFL

II -III , but PII and PIII are inter-
changed. By using these three points,FE

II -III , FU
II -III , andFL

II -III ,
we define the phase boundary of rules.

The distributions of the rules in Fig. 3 show the qualita-
tive probability distributions. However, in order to studyl
dependences ofFE

II -III , FU
II -III , andFL

II -III more quantitatively,
we generate rules independently at fixedNh values. TheseNh
points and numbers of rules are shown in Table V. At each
Nh point, we divide the region inF into sections of width
dF=1, and count the number of rules of each class in these
sections. From these numbers, we estimate the probability
densitiesPsFid, whereFi is the midpoint of that section.

A. Classification of rules in 1/4ÏlÏ1−1/4

Let us proceed to the determination of the transition re-
gion of class II and class III rules. The probability distribu-
tions of PIIsFd and PIII sFd at l=0.3 are shown in Fig. 4(a),
and determinations ofFE

II -III , FU
II -III , and FL

II -III are demon-
strated in Fig. 4(b). For otherl points listed in Table V, the

transition parametersFE
II -III , FU

II -III , andFL
II -III are determined

in a similar manner. They are summarized in Table V. As
already seen in Fig. 3,l dependences ofFE

II -III , FU
II -III , and

FL
II -III are weak in the region 0.25ølø0.75. This is con-

firmed quantitatively by studies at the fixedl values.

B. Classification of rules in large and smalll regions

PII and PIII at l=0.8 are shown in Fig. 5. It should be
noted that there is no region ofF where PII ù PIII . This
means thatFE

II -III and FL
II -III disappear. OnlyFU

II -III can be
determined.

In order to understand what has changed atl=0.8, we
have studied thel dependences ofPII andPIII in the region
lù0.7, which are shown in Fig. 6. It is found thatPIII

gradually increases asl becomes larger but the increase is
quite small, whilePII decreases abruptly betweenl=0.75
and l=0.8. As a result,PII becomes less thanPIII in all F
regions.

For the smalll regionslø0.3d, behaviors ofPII andPIII

are shown in Fig. 7. In this case,PII gradually increases asl
decreases but the change is small. In contrast, the decrease in
PIII is large. As a consequence of these changes, the transi-

TABLE V. The pointsNh, numbers of each pattern class and the transition parameters of CA(5,4) .The
column “Comp” shows the numbers of rules which transmit the information of initial states.

Number of the rules Class I-II Class II-III

l Nh I II III IV Comp FL
I-II FE

I-II FU
I-II FL

II -III FE
II -III FU

II -III

0.125 128 202 1081 1052 42 16 0.0 2.0 3.2 3.0 6.6 9.0

0.15 154 99 499 545 23 17 0.7 2.0 3.6 3.5 6.5 9.1

0.2 205 141 728 1021 39 18 1.2 2.0 3.6 4.7 6.3 8.5

0.25 256 98 479 949 19 8 0.0 1.7 3.8 4.4 5.9 7.5

0.3 307 83 364 878 13 6 1.2 2.0 3.9 4.0 6.0 7.3

0.4 410 117 385 1169 23 7 3.7 4.5 5.7 7.0

0.5 512 53 341 884 23 7 4.8 6.0 7.2

0.6 615 38 488 1316 61 10 4.8 6.1 7.3

0.7 717 4 333 974 89 7 4.9 5.8 6.8

0.75 768 2 256 960 108 7 4.5 5.4 6.6

0.8 819 2 81 1064 12 5 4.3

FIG. 4. Probability distributionsPI, PII , andPIII , and determination ofFE
II -III , FL

II -III , andFU
II -III at l=0.3: (a) PI, PII andPIII distributions;

(b) determinations ofFE
II -III FL

II -III , andFU
II -III .
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tion region of class II and class III spreads over a wider
range inF. These results are also summarized in Table V and
shown in Fig. 8.

In the same way, the determination of the transition region
of the class I and class II rules can be carried out. Prelimi-
nary results are shown in the columns ofFE

I-II , FU
I-II , andFL

I-II

of Table V. It is seen, in Figs. 3(a) and 3(b), that the density
of class I rules decreases asl increases, while that of class II
rules stays almost constant in the regionlø0.75. This fea-
ture is quantitatively confirmed by studies at the fixedl val-
ues. At l=0.4, the region ofF where PI is larger thanPII

disappears, thenFL
I-II and FE

I-II cannot be determined. This
situation is similar to thePII andPIII distributions atl=0.8.

However, we would like to comment that neither the num-
bers of class I rules, nor those of the class II rules are not
large in the regionF,3, where the overlap region of class I
and II CA will be located, therefore, the results may suffer
from large statistical fluctuations. We believe that more data
are required to achieve quantitative classification of class I
and class II rules.

We proceed to classification of rules outside of thesel
regions. In thel,0.25 region, not all the group 2 mappings
can be replaced by the group 1 mappings. Therefore, the
maximum number of group 1 mappingsNsg1dMax cannot be-
come 256, and it decreases to zero asl approaches to zero.
Then the maximumFsFMaxd, also decreases to zero toward
l=0. Conversely, in thel.0.75 region, not all the group 1
mappings could be replaced by the group 2 mappings. The

minimum Nsg1d, and therefore the minimumFsFMind, could
not become 0. The lineFMin increases until its maximum at
l=1. In Fig. 8, we schematically show theFMax and FMin
lines by dotted lines. We note that the dotted line should have
some width due to fluctuations ofN4, N3, N2, andN1 caused
by randomness.

VI. DISCUSSIONS AND CONCLUSIONS

A. Transmission of initial-state information

Computability of CA is discussed very precisely, mainly
for CA(3,2), in a series of papers[4]. In this section, we
discuss the simplest problem of the transmission of initial-
state information to later configurations.

We have found some examples of class II and class IV
patterns appearing with similar probability upon changing
initial configurations randomly. An example is shown in Fig.
9. It is also an example of the transmission of initial-state
information to later configurations, similar to ther=1/2
problem in CA(N,2). These rules are found throughout the
region of 0.125ølø0.8, and the numbers of rules with this
property are also shown in the column “Comp” of Table V. It
is interesting to investigate under what initial condition the
changes of the pattern classes take place.

Although we focused on the differences of pattern classes
between class II and class IV, because, in this case, differ-
ences between the patterns are obvious, there are cases where

FIG. 5. Probability distributionsPII andPIII and the determination ofFE
II -III , FL

II -III , andFU
II -III at l=0.8: (a) PII andPIII ; (b) determination

of FU
II -III . PII is larger thanPIII in all regions ofF, thenFE

II -III andFL
II -III could not be obtained.

FIG. 6. l dependences ofPII andPIII in the regionlù0.7: (a) PII ; (b) PIII .
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a difference between patterns is observed within the same
pattern class. For example, different class II patterns are gen-
erated depending on initial configurations. These are also an
example of the transmission of initial-state information.

B. Classification of rules by the intuitive F parameter

The methods of determining the coefficientsr i in Eq. (10)
are not unique. In Sec. III, in order to determine them, we
used the regression hyperplane of class IV rules, and in order
to obtain 329 class IV rules, we generated a total of about
14 000 rules. This is a rather tedious task. However, the op-
timal set ofr i is close to the intuitive one.

We have studied the classification of rules using the intui-
tive F parameter. The same analysis as in Secs. IV and V are
carried out using an intuitive set of coefficients. The results
are very similar to Figs. 3 and 8, except that the scale of the
vertical axis is enlarged;FMax changes from 17.6 to 24 and
the transition region in Fig. 8 shifts to about 6,F,11.

If the intuitive F parameter could be used to successfully
classify rules for general CAsN,Kd it would be very conve-
nient, because it is determined only by the structure of the
CA rule and there would be no need to collect a large number
of class IV rules. Whether it is successful or not must be
concluded after studies of other CAsN,Kd [14].

C. Conclusions

We began a search for the mechanism which distinguishes
the pattern classes at the samel, and found that the pattern

classes are mainly controlled by the numbers of mappings
that break strings of quiescent states(group 1 mappings).

In the region 1/Kølø1−s1/Kd, the maximumNsg1dMax

corresponds to chaotic limit, and the minimumNsg1d=0, to
periodic limit. Therefore in thisl region, we could always
control the pattern classes using the replacements of Eq.(9)
and their reverse replacements. Using these replacements, we
could study the rules which are difficult to obtain only byNh

or l. This property could be studied quantitatively by intro-
ducing the quiescent string dominance parameterF, and we
found a method of obtaining a phase diagram.

In this study, the above procedure was applied for
CA(5,4). In this case, the group 1 mappings were further
classified into 5 types, as shown in Table I, and the classifi-
cation of rules was carried out in thesl ,Fd plane, as shown
in Fig. 8. It was seen thatl dependences of the transition
region are very gentle, and rules are classified better by theF
parameter than byl. It will be interesting to investigate
whether thel dependences of the transition region depend
on CAsN,Kd models.

In the replacement experiments, we observed class IV be-
havior in many cases. Examples are shown in Fig. 2. Some-
times they were observed in a rather wide range of the

FIG. 7. l dependences ofPII andPIII in the regionlø0.3: (a) PII ; (b) PIII .

FIG. 8. Phase diagram of CA(5,4). The minimum ofFsFMind
and the maximum ofFsFMaxd, which are discussed at the end of
Sec. V B, are schematically shown by the dotted lines.

FIG. 9. An example of the transmission of initial-state informa-
tion atl=0.75.(a) and(b) are generated by the same rule. The only
difference is the initial-state configurations, which are set randomly.
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replacements ofN3 or N2. This indicates that in many cases,
the transitions resemble second-order ones. However the
widths in the ranges ofN3 or N2 were different from each
other, and there were cases where the width was less than
one unit in the replacement of RP2; that is, it was first-order-
like. It would be very interesting to investigate under what
condition the transition becomes first-order-like or second-
order-like. The mechanism of the difference in the transition
is an open problem and it may be studied by taking into
account the effects of group 3 and 4 mappings.

We note that in the transition region of Fig. 8, class II, III,
and IV patterns coexist. The next step is to investigate the
mechanism which distinguishes between them. In such stud-
ies, other new parameters will be found and a more quanti-
tative phase diagram might be obtained. Our paper provides
the next step in that direction.

These issues, together with finding the points where the
transition region crossesFMax andFMin lines (dotted lines) in
Fig. 8, and the nature of the transition at these points will be
addressed in forthcoming publications.
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