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The classification of rules may be one of the most fundamental targets in the study of cellular automata. In
this paper, we propose a method for achieving such a classification, in which a new quiescent string dominance
parameter, which is orthogonal to\, is introduced. FoN-neighbor andK-state cellular automata, in the
region 1K<\ <1-1/K, the maximumF corresponds to the class Il rules, and its minimum, to the class Il
or class | rules. Therefore, transition of the pattern class takes place between them without fail. Byarsihg
F, the phase diagram of cellular automata is determined iXhE) plane for five-neighbor and four-state
cellular automata. The phase diagram indicates that along thes, class Il rules are distributed in a large
region, while class | and class Il rules are, in a srRalegion, and class IV rules are found in the overlapping
region of class Il and Il rules. These distributions are almost independext Afong the\ axis, all four
pattern classes are found in the region 6:25<0.75, and no correlation between pattern class»apdram-
eter is observed.
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[. INTRODUCTION Much more detailed studies of the patterns are carried out
. for elementary CACA(3,2)], in which patterns are studied
coge::;:asr 2?;?;??& A) czgr?s'itzte ngth;?citlg?lsri?gseésaéﬁr y, computational mechanidd], basin of attractof5], etc.

P Y y Y ' 9 this case however, the total number of independent rules is

which takes a finite set of possible valu@to K-1). The : o
value of the site is called its state and it evolves synchro—smaII enough88) [6] that investigations of all of them have

LT . : . already been carried out, and their classification using some
nously in discrete timeg according to a set of mappings

; ) X . sets of parameters has also been stued].
\_/vh|ch are defined by the neighborhoods of the site around Furthermore, for two-state CA, the symmetry of the inter-
it. We denote such cellular automata as(GAK).

The stat tedsés| herei i it change of states “0” and “1” seems to make the classifica-
€ stales are represente .Sas')’ WRerel IS a postlion 4ns of CA more delicate than those of CA wike 3. Dif-
on the lattice. The time evolution &ft,i) is given by ferent results for thep=1/2 task in CA (7,2 have been

[ N-1 N-3 obtained by Packard8], and Mitchell, Crutchfield and
St+1,i)=T s(t,i - —),s(t,i - —),...,s(t,i), Hraber[9]. Therefore, in order to elucidate general properties
2 2 of the CA, it may be worth studying CA witK = 3.
N-3 N-1 However, if we proceed to the studies of general
><S<t,i ——),S(t,i + )] (1) CA(N,K), the number of rules grows superexponentially

KKN; therefore, except for a few GA,K) with small com-
The set of mappings binations ofN andK, it is impossible to study all rules even
within the lifetime of the universe. Therefore in order to
T, vy, py0) = 7 (viete . =0,..K=-1) (2 classify these CAN,K) rules, some other methods are nec-

will be called the rule which consists & entries. A set of €Ssary.
statess(t,i) at the sameis called a configuration, and a time ~_ Studies in this direction have been started by Langton. He
sequence of the configuration forms a pattern. chose state “0” for quiescent states, and introducedithe

It is well known that various patterns can be generated@rameter ag3,10
according to the chosen rules. Wolfrgi classified these N
patterns into four rough categories: clasghbmogeneous A=
state$, class Il (simple separated periodic structureslass
[l (chaos aperiodic patternsand class IV(edge of chaos;
complex patterns of localized structur@he class IV pat-
terns have been the most interesting target of studies of C
because they provide us with examples of self-organizatio
in a simple system, and it is argued that the possibility o
computation is realized by the complexity at the edge o

- @1 (3)

whereNy, is the number of mappings in whichin Eq.(2) is

not equal to 0. In other word3, is the probability that the
appings do not select the quiescent state in the next time
tep. Langton claimed that asincreases, the pattern class

fchanges: from class | to class Il and then to class Ill, and that

class IV behavior is observed between class Il and class IlI

chaos(2,3]. pattern classef3,10,11.
The N parameter is thought to represent the average be-
havior of the CA rule space, but it ultimately does not suffi-
*Electronic address: sakai@e.yamagata-u.ac.jp ciently classify the quantitative behavior of CA. It is well
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known that different pattern classes coexist at the same fall into class IV when its transient leng{3] is longer than
Which of these pattern classes is chosen depends on the r&8800 time steps. The pattern class is discriminated by ob-
dom numbers used in generating the rules. The reason @erving the pattern, the time sequence of spatial entropy
mechanism for this is not yet known; we have no way of[H(t)] and the spatial probabilities of the statgs(t),i
con'grolling pattern classes at fixed In Ref. [11], a sche— =0,1,2,3. For a class Il patterrH(t) andp'(t) converge to
matic phase diagram was presented, however, a vertical axi$me fixed values or periodically repeat some fixed values,

was not specified. Therefore, it is indispensable to find a new e for class Il patterns, they fluctuate randomly. Typical
parameter that will lead to a more quantitative understandln%attem classes are shown in Figs. 1 and3

of Elt]ﬁermer Sgsgscgftﬁglszt]. dv are to find a new paranfeter First, we study whether or not the pattern classes are sen-
purp IS Study ' WP ’ sitive to initial configurations. We fix the rule and change

wh|c.h fixes the vgrUcaI axis of Fhe phase diagram, aﬂd t‘?nitial configurations randomly. For most rules, details of the
obtain a phas_e diagram of CA in th@,F) plgne_:. In this patterns depend on initial configuration, but the pattern
paper, we mainly focus on GA,4), because this is a model classes are unchanggl. Thus differences in pattern classes
Bre mostly due to those of rules, and the target of our inquiry
concerns these differences between them.

For most rules, pattern class is determined by a randomly
ected initial condition. However there are rules which

lati ith th ) that break stri f Ui enerate different pattern classes depending on the initial
correiation with the mappings that breéax strings ot qUIESCENE 4 hgqration. These initial configuration dependences are

states. Then mappings are grouped into four types, aCCOrOImtgoserved for rules with long transient length. For these rules,

to the cllges_tructg)n _and consr'zrudctu;n hOf st_nng?] of qwssceg?bout ten patterns are generated under random initial con-
states. By introducing a method of changing the nUmMbers g, aiions and pattern classes are determined statistically.

qlu|escent-str:|ng-r?lreikmg. mappll\lngfs, vc\j/evt\:/an |Cha(;'g‘.a patte ey will be further discussed in Sec. VI A, in connection
classes at will while keeping or Ny fixed. We also derive a with the transmission of initial-state information.

theoretical explanation for why this change of pattern classes Up to Sec. Ill, we generate rules using omly, as fol-

takes place without fail in the region K<N<1-1/K. lows. We start by choosing 10244 mappings randomly

In_ Sec. lll, Fhe. method .Of changing the pattern classes i‘f‘;md sety=0 on the right-hand side of E@R). For the rest of
studied quantitatively by introducing a new parameter, the N, mappings, takes the value 1, 2, or 3 randomly.

which we 'c::all the qwezcetnttﬁtrlnlg domlnargtce paracrinteter.'T'he For a short while, we do not impose the quiescent condi-
maximumr corrésponds 1o the class Il pattern, and Its mini- 4, (QC), T(0,0,0,0,0=0, because without this condition,

mum, to the class Il or (_:Iass | pattern. Therefo_re the tranSifhe structure of the rule becomes more transparent. This
tion of pattern classes is observed without fail somewher%oint will be further discussed in Sec. Il

between these maximum and minimum values. In order to elucidate why the different pattern classes are
generated at the same we collect rules of different pattern

The distribution of the rules in the\,F) plane is studied
in Sec. IV. We generate about 14 000 rules rando@tails ¢ sses at the same and look for differences between them.
We setN;,=450 (A=0.44), because we empirically find that

of the method are explained in a later secfj@and plot each
around thisNj, point, class lll, class Il, and class IV patterns

of them on the(\,F) plane. The distribution of the rules
are generated in similar ratios. After some trial and error, we

shows that throughout the range B4 <1-1/4, all four
pattern classes coexist. Class Il rules are located in a I%lrgeﬁnd a strong correlation between pattern classes and QC. We
generate 20 rules for each of the class I, class Ill, and class

region, while class Il and | rules are, in a smaliegion, and
class IV rules are found in their overlapping region. Thelv patterns. Among them, the numbers of rules that satisfy
QC are 20, 0, and 2 for class Il, class lll, and class IV

correlation between the parameter and the pattern classes
patterns, respectively. This correlation suggests that the map-

the A parameter and pattern clasg8%

The outline of the paper is as follows. In Sec. I, we start
by elucidating why different pattern classes are generated E1H
the sameh. It is found that pattern classes have a stron

claimed by Langtorn[3] is not observed. We find that his
result is dependent on the method of generating rules usmﬁing T(0,0,0,0,0=h,h+#0, which breaks a string of five

probability \. .
. : e quiescent states, pushes the pattern toward class Ill. We an-
. In Sec. V, we determine the p_has_e d_|agr@1a55|f|cat|0n ticipate that a similar situation will hold for string of four
diagram of rulg of CA from the distributions of the class Il quiescent states
;md class |f|1|' rﬁlis' Ittmay kbet trr:edﬁrs.ttr?errglgu.anuzﬁtlve pthasie We return to the usual definitions of CA. In the following,
iagram which Langton sketched without fixing the vertical, " yiscss CA under the Q0d(0,0,0,0,0=0. The map-

axis. ings which break the strings of four quiescent states are
Section VI is devoted to discussions and conclusions. Thg. 9 9 q

transmission of initial-state informat ion, and other possibleglven by
methods of determining theé parameter will be discussed. :
gmEp T(0,0,0,00) =h,
Il. STRUCTURE OF RULE AND PATTERN CLASSES
A. Correlation between pattern classes and quiescent-string- T(i,0,0,0,0=h,(i,h=1,2,3. (4)

breaking mappings

In this paper, we fix the size of the lattice to be 150 andWe study the correlation between the number of these map-
set a periodic boundary condition. A pattern is considered t@ings and pattern classes.
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FIG. 1. Pattern classes Bt,=450. The quiescent state is shown by the white dot, while other states are indicated by blackapoint:
Ny=4; (D), (), (d) Na=3; (e), (f), (@) Ng=2; (h) N,=1.

We denote the total number of mappings expressed by Eq. Group 2:T(u«,v,0,p,0)=0.
(4) in a rule asN,. In order to study the correlation between The mappings in this group conserve strings.
the pattern class and numbig, we generate 30 rules and ~ Group 3:T(w,v,i,p,0)=0.
grouped them according to the numiéy. We have 4 rules  The mappings in this group will develop strings of quiescent
with N,=4, 13 rules withN,=3, 9 rules withN,=2, and 4  states.
rules withN,<1. WhenN,=4, all rules generate class Il Group 4:T(w,v,i,p,0)=l.
patterns, whereas whey< 1, only class Il patterns are gen- The mappings in this group do not affect the string of quies-
erated. AtN,=3 andN,=2, class lll, class Il, and class IV cent states in the next time step.
patterns coexist. Examples are shown in Fig. 1. The coexist- | et us denote the number of group 1 mappings in a rule as
ence of three pattern classes Mj=3 is seen in Figs. N(gl). The number of other groups is denoted similarly.
1(b)-1(d) and that ofN,=2 is exhibited in Figs. (&)-1(g). These numbersN(gi), (i=1,2,3,4 satisfy the following
As anticipated, strong correlation betweldpand pattern — gym rules, whem,, is fixed:
class is also observed in this case. These discoveries have

provided us with a key hint that leads us to the hypothesis N(gl) + N(g2) = 256,
that the mapping, which breaks strings of quiescent states,
will play a major role in determining the pattern classes. N(g3) + N(g4) = 768,

B. Structure of rule and replacement experiment N(g2) + N(g3) = 1024 -Np,,
_ In order to _test the hypqthes_ls given in the precedm_g sec- N(gl) + N(g4) = N,.. (5)
tion, we classify the mappings into four groups according to
their operation on strings of quiescent states. In the followdn the methods of generating rules randomly usigor \,
ing, Greek characters in the mappings represent groupgfese numbers are determined mainly by the probability
0,1,2,3while Roman ones represent group2, 3. namely, N(gl) =256\, N(g2)=2561-\), N(g3)=7681
Group 1:T(u,v,0,p,0)=h. —-\), andN(g4) =768\. Therefore they suffer from fluctua-
The mappings in this group break strings of quiescent statesion due to randomness.
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FIG. 2. Examples of the replacement experiments,a615.(a) Obtained randomly witiN,,=615, by the method explained in Sec. Il A.
(b) to (h) Obtained by the replacements of the rule(@f which are summarized in Table II.

The group 1 mappings are further classified into five types or T(i,0,0,0,0 =h — T(i,0,0,0,0 =0,
according to the length of the string of quiescent states that
they break. These are shown in Table I. Mapping D5 is al- _ _
ways excluded from the rules by the QC. Our hypothesis T(w,,j,p,0) =0 — T, v,j,p,0) =1, (6)
presented at the end of Sec. Il Ais expressed more quantita-

tively as follows: the numbers of D4, D3, D2, and D1 map—Where’ except fo, the groupsu, v, p, o, J, andl are
selected randomly. Similarly, the replacements are general-

pings shown in Table | will mainly determine the pattern .
classes. In order to test this hypothesis, we artificially chang oeg;irig?r’agli’ Iand D1 mappings, and are denoted as RP4

the numbers of mappings in Table | while keepNgfixed. Th | ts for D4
For D4 mappings, we carry out the replacements defined by € reverse replacements for are

T(0,0,0,0i) =h— T(0,0,0,0j) =0, T(0,0,0,0i) =0— T(0,0,0,0j) =h,

TABLE |. Classification of the mappings in group 1 into five
types, wheren # 0. or T(i,0,0,0,0 =0— T(i,0,0,0,0 = h,
Type Total number Name Replacement T(w 1, p,0) =1 — T(,v,j,p,0) = 0. @)
T(0,0,0,0,0=h 1 D5 RP5,RC5 ) )
T(0,0,0,0))=h 3 D4 RP4.RC4 In this case, the group, w, v, j, p, and o are selecte(_j _
T(.0,0,0,0=h 3 randomly. The replacements for D3, D2, and D1 are simi-

e larly defined, and are called RC4 to RC1.
7(0,0,0j,0)=h 12 With these replacements of RP4 to RP1 or RC4 to RC1,
T(,0,0,0m=h 9 D3 RP3,RC3 the numbers of mappings in Table | are changed, whijle
T(,j,0,0,0=h 12 remains the same. We denote the numbers of D4, D3, D2,
T(®,j,0,0,m=h 36 D2 RP2,RC2 and D1 mappings abl,, N3, Ny, and N,, respectively. We
T(,0,0),0)=h 36 study whether or not these replacements change pattern
T(w,j,0,l,0)=h 144 D1 RP1,RC1 classes. In these replacements, the RP4s are always carried

out first, followed by RP3s. Examples are shown in Fig. 2.
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TABLE II. The number of group 1 mappings and the number of ~ TABLE Ill. Classification of CAN,K) mappings into 4 groups.
replacements needed to obtain the pattern classes shown in Fig. 2; represents 0 t&-1 while h, i, andl represent 1 td-1.

Figure Ny, N3 N, Ny RP4 RP3 RP2 RP1 Mapping type Average number
2(a) 3 22 53 96 0 0 0 0 Group 1 T(wq, 2,50, ... up)=h KN=I\

2(b) 0 14 53 96 3 8 0 0 Group 2 T(y, p2,-.0,0, 0 upn) =0 KN-Y(1-))

2(c) 0 13 53 96 3 9 0 0 Group 3 T(pa, gy ey oo in) =0 KN"Y(K-1)(1-)\)
2(d) 0 12 53 96 3 10 0 0 Group 4 T(pgs oy ool yeee i) =1 KNLYK-D\
2(e) 1 7 53 96 2 15 0 0

2(f) 1 6 53 96 2 16 0 0

2(g) 2 1 5 9% 1 21 0 0 N(g1) + N(g4) = N. (8
2(h) 2 0 53 96 1 22 0 0

However, the individual numbeN(gi) (i=1,2,3,4, suffers
from fluctuations due to random number. The replacements
needed to decrease the number of group 1 mappings while
Is<eepingNh fixed are given by

The rule of Fig. 2a) is obtained randomly witiN,=615.
At N,=615, most of randomly obtained rules generate clas
Il patterns. We first apply replacements RP4 three times,
thenN, becomes 0. At this stage, the rule still generates class
[l patterns. Then we proceed to carry out replacement RP3.
T?]e classblll patterns cc;]ntinue from3h=22 to N3=ﬁ5, a}nd N(g3) — N(g3) -1, N(g4) — N(g4) + 1. (9)
when N; becomes 14, the pattern changes to the class IV . _
behavior, which is shown in Fig(B). Figure Zc) is obtained T.hese replacements stop either whi(gl)=0 ir N(g3)
with one more RP3 replacement for the Figorule. Figure =0 iS reachedTable ll). Therefore wherN(gl)<N(g3),
2(c) shows a class Il behavior with a rather long transientvhich corresponds ta < (1-1/K) in A, all group 1 map-
length. The pattern with one more replacement of RP3 foPings are replaced by group 2 mappings. In this limit, quies-
Fig. 2c) is shown in Fig. 2d), where the transient length Cent states at timewill never be changed, because there is
Ns, and the numbers of replacements RP4 and RP3 needed3omMappings have chances to create new quiescent states in
obtain each rule in Fig. 2. the next time step. Therefore, the number of quiescent states
Similarly, experiments in which replacements RP4 argdn a configuration is a nondecreasing function of time
stopped atN,=1 andN,=2 are shown in Figs.(®)-2(f) and Then, the pattern class should be class | or class Il, which we
2(g)-2(h), respectively. We note that the pattern changeall the periodic limit.
from class Il to class IV take place éN,=0, N3=13), (N, Let us dlscu_ss reverse replace_zments of 9. In these
=1N;=6), and (N,=2N;=0). Therefore the effect that replacements, iN(g2)=<N(g4), which corresponds to K/
pushes a rule toward class Il is stronger for D4 than for D3.<A\, all group 2 mappings, except for the QC, are replaced
This point will be discussed more quantitatively in the fol- by group 1 mappings. In this extreme reverse case, almost all
lowing section. quiescent states at tinteare converted to other states in the
At N,=819, 768, 717, 615, 512, 410, 307, and 205, wenext time step, while group 3 mappings create them at dif-
carried out similar replacement experiments for 119, 90, 9oferent places. Then the patterns will most probably develop
117, 107, 92, 103, and 89 rules, respectively. ANglpoints, into class IIl. This limit will be called the chaotic limit. We
we succeeded in changing the pattern classes from class Mote that there is a possibility that atypical rules and initial
to class Il or class I, or vice versa, by these replacements. Ifonditions might generate periodic patterns even in this limit.

many cases, class IV patterns were observed between theffowever in this paper, these atypical cases are not discussed.
Therefore in the region K<sA<1-1/K, all rules are

located somewhere between these two limits, and by succes-
sive replacements of EQ9) and their reverse replacements,
Let us study the effects of the replacements theoreticallghange of the pattern classes takes place without fail. This is
in general CAN,K). In the general case, rules are also clasthe theoretical foundation for the replacement experiments
sified into four groups, as shown in Sec. Il B. We have de-described in the preceding section and also explains why
noted their numbers abl(gl), N(g2), N(g3), and N(g4). four pattern classes coexist in this region.
When N, is fixed, these numbers satisfy the following sum  The replacements defined by E@) and their reverse
rules, which are generalizations of H§). replacements, provide us with a method of controlling the
CUN-1 pattern classes at the sarg. The details of the replace-
N(g1) + N(g2) = K™, ments of Eq.(9) depend on the individual models. In the
CA (5,9 case, these replacements were RP4 to RP1 and RC4

N(gl) — N(gl) -1, N(g2) — N(g2) +1,

C. Chaotic and periodic limit of general CA(N,K)

N(g3) + N(g4) =K1K - 1), to RC1. By applying these replacements, we could study the
rules, which are difficult to obtain using onN, (or \), and
N(g2) + N(g3) =KN - N;,, gain deeper understanding of the structure of CA rules space.
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Il. QUIESCENT STRING DOMINANCE PARAMETER F TABLE IV. Optimal and intuitive coefficients;.
IN CA(5,4)
Optimal Error Intuitive
In the preceding section, we found that, in the region
1/K<\=<1-1/K, each rule is located somewhere between's 0.1563 0.0013 0.18182
the chaotic limit and the periodic limit. In order to express'2 0.0506 0.0007 0.08333
the position of the rule quantitatively, we introduce a newr; 0.0195 0.0002 0.04167

parameter= which we call the quiescent string dominance
parameter. It provides us with a ndwaxis orthogonal to.
The minimumF is the periodic limit, while its maximum ra (ONEH)Z+1,> SNGTSN + 1>, SN ONG
corresponds to the chaotic limit. In this section, we will de- i i ij
termine the parametdt for CA(5,4). o

As a first approximation, the paramefeiis taken to be a =- E SNy oN3',
function of the numbers of mappings D4, D3, D2, and D1, b
which have been denoted Bg, N3, N,, andN;, respectively.
We proceed to d(_atermirié(N4,N3,N2_, N,) by applying sim- _ > 5Ni3;j SN + 1, (SN2 + 1>, SN NG
plest approximations and assumptions. We apply Maclaurin i i i
series expansion fdf, and approximate it by the linear terms

in N,, Ng, Ny, andN. = - 2 ON N,
i
F(N4,Ng,Ny) = c4N4 + c3N3 + coN, + ¢4N;. 1 i o i o i
(Ng,N3,Np) = €4Ng + CgN3 + €N, + €3Ny (10) raZ 6N'3'15N'1"+r22 5N|2'15N|1'J+r12 (SNi)2
ij 1) ]
Here,c,=dF/ N, and similarly forcs, ¢y, andc,. They rep- ==> 5N‘4'J'(SN‘1'J', (12)

resent the strength of the effects of mappings D4, D3, D2, i
and D1 that push the rule towards the chaotic limit. These
definitions are symbolic, because numbatsare discrete. where SN;/=N,~N}, and similarly forsNj' and oN3'.
The measure in parametEris still arbitrary. We set its unit In order to collect class IV rules, we have generated rules
such that an increase in one unitf, results in a change of randomly both forN,, in the region 205N, <819 (0.2<\
F by one unit. This corresponds to dividifigin Eq.(10) by ~ <0.8), and for numbers of group 1 mappings in the ranges
¢y, and expressing it by ratioss/c, (r3), co/cy (ry), and  0<N,<6, 0<N3=<33, 0<N,=<72, and G=N;<144.
Cilcy(ry). This is realized by a two-step method. In the first step, we
Before we proceed to determimg, r,, andr,, let us in-  generate rules randomly according to the nunfidgras ex-
terpret the parametef geometrically. Most generally, the plained in Sec. Il A. We note that at this step, the numbers of
rules are classified in 1024-dimensional space, in case d@roup 1 mappings\,, N3, Np, andN,, are distributed around
CA (5,4). The location of the rule of each pattern class forms6)\ 33\, 72\, and 144, respectively. They are denoted as
a hyperdomain in this space. We map these hyperdomairly. Then in the second step, edshis determined randomly
into those of four-dimensiondN,, Ns,N,,N;) space. We in- between zero and its maximum. Eaghobtained in the first
troduce a hypersurfac&N,4,N3,N,,N;)=® in order to align ~ step is changed to the random valNgby the replacements
the points of class IV rules. In E¢L0), we approximate it by ~0f RC4 to RC1 or RP4 to RP1.
a hyperplane. Th& axis is the normal line to this plane. We have generated about 14 000 rules, and classify them
Our strategy for determinings, r, andr; is to find the  into four pattern classes. There are 483 class I, 3169 class I,
regression hyperplane of class IV rules on four-dimensional0248 class lll, and 329 class IV rules, respectively. From
space(N,N3,N,,N,). It is equivalent to fixing theF axis in the 329 class IV rules, the coefficiemsare determined by
such a way that the projection of the distribution of class Ivsolving Eq.(12). We call them optimal coefficients. The re-
rules on theF axis appears as narrow as possible. The qualitpults are summarized in the column “optimal” of Table 1V,
of our approximations and assumptions reflects the width ofvhere the statistical errors are estimated by the jackknife
the distribution of class IV rules. Using least squares, ouimethod. The result shows that coefficients are positive, and
problem is formulated to find, r,, andr; which minimize  satisfy the order

Cy>C3>Cy>Cy. (13
S(ra,rara) = E [F |ass|v(N4' uNinNi]_) This means that the effects that push rules toward the chaotic
4 ] limit on the F axis are stronger for mappings which break
FLiassn NG NG NL ND T2, (1) longer strings of quiescent states.

If the quiescent condition is not imposed, EG3) will
becomec;>c,>c3>c,>c;. The correlation between pat-
wherei andj indicate the class IV rules. We solve equations,tern classes and D5 mapping will be stronger than that be-
Sl dr3=0, dS/ dr,=0 anddS/ dr,=0, which are tween D4 mappings. If we start our study under the QC, we
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FIG. 3. Distribution of rules i\ ,F) plane.(a) Distribution of 483 class | rulegb) Distribution of 3169 class Il rulegc) Distribution
of 10248 class Il rules(d) Distribution of 329 class IV rules.

may make a longer detour to find the hypothesis and arrive are generated only by the probabilityusing the “random-

the qualitative conclusion presented in Sec. Il. table method” or the “random-walk-through methof8],
The order in Eq(13) is understood in terms of the fol- numbers of group 1 rulell,, N3, N,, andN; are also con-

lowing intuitive arguments. If six D4 mappings are includedtrolled by the probability\. They are distributed around the

in the rule, the string of five quiescent states will not de-NiA as described in Sec. Ill. Then parameters are also dis-

velop. Similarly, if 33 D3 mappings are present in the rule,tributed around

there is no chance that strings of four quiescent states are \

made. These two situations are roughly similar for the for- F'=(6+335+ 72+ 144\, (14)

mation of pattern classes. Thus the strength of the D3 maprherefore, in these methodsandF are strongly correlated.
pings rs will be roughly equal to 6/33 of that of D4 map- \when \ is small, rules with smalF are mainly generated,
pings; similar arguments apply for the strengths of the D2yhich are class | and class Il CA. On the other hand, in the
and D1 mappings. We call thesgintuitive coefficients, and |arge \ region, rules with largé= are predominantly gener-
they are also shown in the column “intuitive” of Table IV. It ated, which are class Il CA. The lie* of Eq (14) crosses

is found that differences between optimal and intuitive coef+the |ocation of class IV patterns at around €< 0.55. The
ficients are not large. The classification of the rules with arprobability of obtaining the rules that are far from the line

intuitive F parameter will be discussed in Sec. VI B. given by Eq(14) is very small. This m|ght be the reason
why Langton obtained his results.
IV. DISTRIBUTION OF RULES IN (A,F) PLANE The distribution of rules throughout thé\,F) plane

shows the global structure of the CA rule space, as in Fig. 3
Using the optimalF parameter, we plot the position of anqd |ead to a deeper understanding of CA.
each rule in thé\ ,F) plane, as shown in Fig. 3. The class Il
rules are_shown to be located in a Iar@e_region of about V. CLASSIFICATION OF RULES IN (A,F) PLANE
F=4, while class | and class Il rules are in a snfallegion
of aboutF=9, and class IV rules are found in the overlap- In Fig. 3, it is found that rules are not separated by sharp
ping region of class Il and class Il rules of abouc&<9.  boundaries, but they have some probability distributions. We
Figure 3 also reveals that at least in the €2<0.75 denote the probability densities of class |, class Il, class I,
range, all four pattern classes coexist and that the classificand class IV rules aB', P", P, and P, respectively and
tion of the CA pattern classes on the basis ofxhgarameter proceed to determine a phase diagram by using them.
is not confirmed, contrary to the results in RES]. Let us The equilibrium pointsFE ™" (\) of class Il and class I
discuss the reason why Langton obtained his results. If rulesiles are defined by the point where the relatiB(F)
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TABLE V. The pointsN;, numbers of each pattern class and the transition parameters (&8{4LAThe
column “Comp” shows the numbers of rules which transmit the information of initial states.

Number of the rules Class |-l Class lI-1ll

A N I I I v Comp FM™ FE"ORS ORI ELM
0.125 128 202 1081 1052 42 16 0.0 2.0 3.2 3.0 6.6 9.0
0.15 154 99 499 545 23 17 0.7 2.0 3.6 35 6.5 9.1
0.2 205 141 728 1021 39 18 1.2 2.0 3.6 4.7 6.3 8.5
0.25 256 98 479 949 19 8 0.0 1.7 3.8 4.4 5.9 7.5
0.3 307 83 364 878 13 6 1.2 2.0 3.9 4.0 6.0 7.3
0.4 410 117 385 1169 23 7 3.7 45 5.7 7.0
0.5 512 53 341 884 23 7 4.8 6.0 7.2
0.6 615 38 488 1316 61 10 4.8 6.1 7.3
0.7 717 4 333 974 89 7 4.9 5.8 6.8
0.75 768 2 256 960 108 7 4.5 5.4 6.6
0.8 819 2 81 1064 12 5 4.3

=P'"(F) is satisfied. The region wher' andP'" coexistin  transition parametersg™", F;"", andF!'"" are determined
a similar ratio defines the transition region. The upper pointsn a similar manner. They are summarized in Table V. As

of the transition regiorF;" are the points"'=P"'/e, and  already seen in Fig. 3y dependences df¢™"', F"', and
FI'""" are weak in the region 0.25\<0.75. This is con-

similarly for lower pointsF'"", but P" and P" are inter-
changed. By using these three poiits,", Fl;"", andF|'™"",  firmed quantitatively by studies at the fixadvalues.

we define the phase boundary of rules.

The distributions of the rules in Fig. 3 show the qualita-
tive probability distributions. However, in order to study
dependences dig™", F™", andF}'"" more quantitatively,
we generate rules independently at fixggvalues. Thesél,
points and numbers of rules are shown in Table V. At eacimeans that. ™" and F'"'" disappear. OnlyF}""
Ny, point, we divide the region i into sections of width determined.
6F=1, and count the number of rules of each class in these In order to understand what has changed\ a0.8, we
sections. From these numbers, we estimate the probabilityave studied tha dependences d?' andP"' in the region

densitiesP(F;), whereF; is the midpoint of that section. A=0.7, which are shown in Fig. 6. It is found th&"
gradually increases as becomes larger but the increase is

quite small, whileP" decreases abruptly betwearr0.75
and\=0.8. As a resultP" becomes less thaR'!" in all F

Let us proceed to the determination of the transition retegions.
gion of class Il and class IlI rules. The probability distribu-  For the small region(A <0.3), behaviors o' andP"!

B. Classification of rules in large and small\ regions

P! and P"" at A=0.8 are shown in Fig. 5. It should be

noted that there is no region d&f where P'=P". This
can be

A. Classification of rules in 1/4<A<1-1/4

tions of P"'(F) and P"'(F) at A\=0.3 are shown in Fig.(4),
and determinations oFg™, F/™, and F!" are demon-
strated in Fig. &). For other\ points listed in Table V, the

Probability Distribution

0.12- L —=—FP
/O \ | e—p'
]
| o p"

0.081 'Xo \3\ °
0.04 /'/° ™\

/l/ . °/ ) \°\

< :;7(.\_-\ \_.\ 0\
000 % 4 8 12 16

(a)

are shown in Fig. 7. In this casB!' gradually increases as
decreases but the change is small. In contrast, the decrease in
P is large. As a consequence of these changes, the transi-

min(P",P"')imax(P", P"I}

o F i
E
0.9 \
[
Fu.m . F.
0.6 L
\f/ \/
031 / \- e
-
VAN
0.0 L r i, )
0 4 8 F 12 18

(b)

FIG. 4. Probability distribution®', P!, andP", and determination dF¢™", F'"", andF,"" atA=0.3:(a) P', P"' andP"" distributions;

(b) determinations of ™" F'"', andF}™".
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P" P =0.8 P'Y/P"  Rate of Distributions
0.156- o 1
0.9
0.12- O/\O/O\ p" |
0.094 /D 0.6
o
0.06 / \ ' 3
L= B
0.03 2 P’ ° > \
= 7 \ g .
9]
000 Im a3 00— R o P
0 & g 10 15 0 F 10 15

(a) (b)

FIG. 5. Probability distribution®'" andP'"" and the determination ¢ft ", F''", andF|"" atA=0.8:(a) P" andP"'; (b) determination
of F™. P! is larger tharP'"! in all regions ofF, thenFi ™" andF" I”could not be obtalned

tion region of class Il and class Ill spreads over a widerminimum N(gl), and therefore the minimua(Fy;,), could
range inF. These results are also summarized in Table V anchot become 0. The linE);, increases until its maximum at
shown in Fig. 8. A=1. In Fig. 8, we schematically show th§,., and Fy;,

In the same way, the determination of the transition regiorlines by dotted lines. We note that the dotted line should have
of the class | and class Il rules can be carried out. Prelimisome width due to fluctuations &f;, N3, N,, andN; caused
nary results are shown in the columnsff', Fl)', andF{" by randomness.
of Table V. It is seen, in Figs.(d and 3b), that the densny
of class | rules decreasesXacreases, while that of class Il

rules stays almost constant in the regios 0.75. This fea- VI. DISCUSSIONS AND CONCLUSIONS
ture is quantitatively confirmed by studies at the fixedal- . . ) _
ues. AtA=0.4, the region of where P is larger thanP" A. Transmission of initial-state information

disappears, thef|" and F£" cannot be determined. This ~ Computability of CA is discussed very precisely, mainly
situation is similar to thé®'" andP'" distributions ai=0.8.  for CA(3,2), in a series of paper4]. In this section, we
However, we would like to comment that neither the num-discuss the simplest problem of the transmission of initial-
bers of class | rules, nor those of the class Il rules are no$tate information to later configurations.
large in the regiorF <3, where the overlap region of class | ~ We have found some examples of class Il and class IV
and Il CA will be located, therefore, the results may sufferpatterns appearing with similar probability upon changing
from large statistical fluctuations. We believe that more datanitial configurations randomly. An example is shown in Fig.
are required to achieve quantitative classification of class 9. It is also an example of the transmission of initial-state
and class Il rules. information to later configurations, similar to the=1/2
We proceed to classification of rules outside of thkse problem in CAN,2). These rules are found throughout the
regions. In thex <0.25 region, not all the group 2 mappings region of 0.125< A <0.8, and the numbers of rules with this
can be replaced by the group 1 mappings. Therefore, thproperty are also shown in the column “Comp” of Table V. It
maximum number of group 1 mappindgl) .y cannot be- is interesting to investigate under what initial condition the
come 256, and it decreases to zera\aspproaches to zero. changes of the pattern classes take place.
Then the maximunt(Fy,,), also decreases to zero toward  Although we focused on the differences of pattern classes
A=0. Conversely, in th&.>0.75 region, not all the group 1 between class Il and class IV, because, in this case, differ-
mappings could be replaced by the group 2 mappings. Thences between the patterns are obvious, there are cases where

P P'in large A region P! P"in large X region
0.06 0 0.15 .
/ —e— \=0.8 /o
o —o— A=0.75 0.12+ s/oig e [ A=0.8
g / \O\ o A=07 f I]\. —o— A=0.75
E 0.09 /o oY |—o— A=0.7
0.034

‘k\o\-\\
o
~=

0.06 1 / Q/
\j .
[ ) i [
‘0% 0% b 0.03 /Cf N\
e e v oY,
0.00 1= . _\izlh-_-_r-_-_-_ 0.00 |~ -~<Baa" ) . ‘ B
0 5 10 F 15 0 5 10 F 15

(a) (b)

FIG. 6. N dependences d?'' andP"" in the regionx=0.7: (a) P"; (b) P".
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R . Il
0.10- P"in small X region 0 14P P" in small A region
0.08 g 0l12 |
' / Q\ 129 —o—2=0.3
* /\\. o —o0—\=0.3 0.10] e 3202
0.06 -| / \n\' | e— 7=0.2 008: —o— A=0.15
o \. 0 A=0.15 ] —v— %=0.125
0.041 5 —y—»=0.125 | 098] —
/E A\ 0.041
0.02{ \ ]
hIg N 0.02 N
;Q/ ° \{.\ 1 =g N
0.00 . NP oo 0,004 Nae = a
0 5 10 g 15 0 15

(a) (b)
FIG. 7. A dependences @' andP"" in the region\ <0.3: (a) P"; (b) P'".

a difference between patterns is observed within the sameasses are mainly controlled by the numbers of mappings
pattern class. For example, different class Il patterns are gemhat break strings of quiescent statgsoup 1 mappings
erated depending on initial configurations. These are also an |n the region 1K<\ <1-(1/K), the maximunmN(g1)yax
example of the transmission of initial-state information. corresponds to chaotic limit, and the minimudg1)=0, to

B. Classification of rules by the intuitive F parameter periodic limit. Therefore in this\ region, we could always
control the pattern classes using the replacements of%&q.

The methods of determining the coefficientin Eq. (10) _ .
are not unique. In Sec. Ill, in order to determine them, weand their reverse replacements. Using these replacements, we

used the regression hyperplane of class IV rules, and in ord&PUld Study the rules which are difficult to obtain only Ky

to obtain 329 class IV rules, we generated a total of abouP’ A+ This property could be studied quantitatively by intro-
14 000 rules. This is a rather tedious task. However, the opducing the quiescent string dominance parameteand we
timal set ofr; is close to the intuitive one. found a method of obtaining a phase diagram.

We have studied the classification of rules using the intui- In this study, the above procedure was applied for
tive F parameter. The same analysis as in Secs. IV and V aréA(5,4). In this case, the group 1 mappings were further
carried out using an intuitive set of coefficients. The resultsclassified into 5 types, as shown in Table I, and the classifi-
are very similar to Figs. 3 and 8, except that the scale of theation of rules was carried out in tli&,F) plane, as shown
vertical axis is enlargedt);,x changes from 17.6 to 24 and in Fig. 8. It was seen that dependences of the transition
the transition region in Fig. 8 shifts to aboutd-<11. region are very gentle, and rules are classified better bif the

If the intuitive F parameter could be used to successfullyparameter than by. It will be interesting to investigate
classify rules for general GA,K) it would be very conve- whether the\ dependences of the transition region depend
nient, because it is determined only by the structure of theynh CA(N,K) models.

CArtule and there would be no need to collect a large number | the replacement experiments, we observed class IV be-
of class IV rules. Whether it is successful or not must benayior in many cases. Examples are shown in Fig. 2. Some-
concluded after studies of other G&K) [14]. times they were observed in a rather wide range of the

C. Conclusions

We began a search for the mechanism which distinguishe< Site Site
00 30 60 80 120

the pattern classes at the sameand found that the pattern 0 20 60 60 120

F
] 7 g 2001
151 Fuax . FH“LI i
! : e
! 400+
124 Class Il —a—pP" L
94 vy Transition Region 5 §00-
\'"V\y———va\v\ .
6- ‘ *e .s M pe Ps M : |
3 . “/A“\A/Ar—‘i‘—_A\A Frin 8001
i Classll L T o t
0 —_— 1000 1000+
0.0 0.2 0.4 06 a 0.8 1.0 (a) (b)
FIG. 8. Phase diagram of GB,4). The minimum ofF(Fy;,) FIG. 9. An example of the transmission of initial-state informa-
and the maximum of(Fy,,), which are discussed at the end of tion atA=0.75.(a) and(b) are generated by the same rule. The only
Sec. V B, are schematically shown by the dotted lines. difference is the initial-state configurations, which are set randomly.
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replacements dfl; or N,. This indicates that in many cases, = We note that in the transition region of Fig. 8, class I, llI,
the transitions resemble second-order ones. However thend IV patterns coexist. The next step is to investigate the
widths in the ranges o5 or N, were different from each mechanism which distinguishes between them. In such stud-
other, and there were cases where the width was less thams, other new parameters will be found and a more quanti-
one unit in the replacement of RP2; that is, it was first-ordertative phase diagram might be obtained. Our paper provides
like. It would be very interesting to investigate under whatthe next step in that direction.

condition the transition becomes first-order-like or second- These issues, together with finding the points where the
order-like. The mechanism of the difference in the transitiontransition region crossdsy ., andFy;, lines(dotted linegin

is an open problem and it may be studied by taking intoFig. 8, and the nature of the transition at these points will be
account the effects of group 3 and 4 mappings. addressed in forthcoming publications.
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